Monday, January 18, 2021

Snap-freezing reveals a truer structure of brain connections

Scientists at EPFL (near Lausanne, Switzerland) have used a snap-freezing method to reveal the true structure of the connections that join neurons together in the adult brain.

Most synaptic connections in the adult brain are situated on dendritic spines; small, micrometer-long, protrusions extending from the neurons’ surface. The spines’ exact size and shape determine how well signals are passed from one neuron to another.

These details become very important when neuroscientists want to model brain circuits or understand how information is transmitted between neurons across the brain’s neuronal circuits. However, their small size and the difficulties in preserving brain tissue in its natural state have always left the question open as to what the true structure of the dendritic spine is.

Scientists from EPFL’s School of Life Sciences have now used a snap-freezing method of liquid nitrogen jets, combined with very high pressures, to instantaneously preserve small pieces of brain tissue. The researchers, from the labs of Graham Knott and Carl Petersen, then used high-resolution, 3D imaging with electron microscopes to reveal how the true dendritic spine structure was similar to that shown in previous studies, except for one important aspect: The instant freezing method showed dendritic spines with significantly thinner necks.

This finding validates a considerable body of theoretical and functional data going back many years, which shows that dendritic spines are chemical, as well as electrical, compartments isolated from the rest of the neuron by a thin and high-resistance neck. Variations in the neck diameter have an important impact on how a synapse influences the rest of the neuron.

“As well as revealing the true shape of these important brain structures, this work highlights the usefulness of rapid freezing methods and electron microscopy for obtaining a more detailed view of the architecture of cells and tissues,” says Graham Knott.

Friday, May 22, 2020

The coronavirus’ rampage through the body


SARS-CoV-2, the virus that causes COVID-19, can severely damage lungs, but in serious cases it doesn’t stop there—clinicians have observed body-wide damage due to the coronavirus. As researchers begin to better understand the pathology of the disease, new treatments can be deployed to help save lives.

Tuesday, August 27, 2019

Revolutionising the CRISPR method

14.08.2019 | News

Researchers at ETH Zurich have refined the famous CRISPR-Cas method. Now, for the very first time, it is possible to modify dozens, if not hundreds, of genes in a cell simultaneously.
Gennetzwerke
Genes and proteins in cells interact in many different ways. Each dot represents a gene; the lines are their interactions. For the first time, the new method uses biotechnology to influence entire gene networks in one single step. (Visualizations: ETH Zurich / Carlo Cosimo Campa)

Everyone’s talking about CRISPR-Cas. This biotechnological method offers a relatively quick and easy way to manipulate single genes in cells, meaning they can be precisely deleted, replaced or modified. Furthermore, in recent years, researchers have also been using technologies based on CRISPR-Cas to systematically increase or decrease the activity of individual genes. The corresponding methods have become the worldwide standard within a very short time, both in basic biological research and in applied fields such as plant breeding.

Smart interaction between proteins

19.08.2019 | News

Very little was known till now about DNA repair by homologous recombination, which is fundamental for human health. Now an ETH research group has for the first time isolated and studied all the key proteins involved in this process, laying the foundation for investigating many diseases.


Which proteins are essential for cell division? The biochemist Philipp Wild (left) and his colleagues Ilaria Piazza and Christian Dörig examine the results from the mass spectrometer. (Photograph: ETH Zurich / Adrian Henggeler)



Within our body, the process of cell division is constantly creating new cells to replace old or damaged ones. The genetic information is also duplicated and passed on to the new cells. Complex interaction of many different proteins ensures a smooth process. This is because these proteins immediately repair any errors that creep in during DNA duplication. However, the same protein machinery also performs another function: in germ cells that divide to from gametes – egg cells and sperm – it is responsible for mixing the genetic information of the original maternal and paternal side during cell division. The same mechanism therefore has to resolve two conflicting problems: in normal cell division, called mitosis, it ensures genetic preservation, while in the cell division to produce gametes, or meiosis, it ensures genetic diversity. 

Sunday, July 21, 2019

Chinese Scientists Say They’ve Found a Safer Alternative to CRISPR

Researchers from China’s Peking University have developed a new gene-editing technology —  and they think it shows promise as a CRISPR alternative for fighting human diseases.

According to a paper published on Monday in the journal Nature Biotechnology, this new technology, LEAPER, which stands for “leveraging endogenous ADAR for programmable editing of RNA,” works similarly to CRISPR-Cas13, targeting RNA molecules as opposed to DNA like the well-known CRISPR-Cas9.

But while CRISPR-Cas13 relies on both a guide RNA and the Cas13 enzyme to make its edits to RNA, the LEAPER system needs just one component known as an arRNA.

Click for more

Friday, July 12, 2019

Proton Therapy

There are more than 200 different types of cancers. According to the US National Cancer Institute, nearly 40% of Americans will be diagnosed with cancer during their lives. The World Health Organization names cancer as the second leading cause of death globally, causing nearly one in six deaths. In case anyone needs reminding, cancer is a big deal. Lung cancer is the leading cause of cancer deaths around the world, causing more deaths than prostate, breast and colon cancers combined. Only 18.5% of patients will survive five or more years after being diagnosed with lung cancer. So smokers, take note! Alongside chemotherapy and surgery to remove tumors, about 40% of cancer patients are treated with radiotherapy, which fires ionizing radiation into the body, killing malignant cells with X-ray photons. Roughly 17,000 clinics worldwide deliver X-ray radiotherapy treatment today.

The rise in popularity of proton therapy (vs X-ray) is continuing across the globe. It is estimated that more than 165,000 patients suffering from a variety of cancers, such as prostate cancer, brain tumors, etc. have already been successfully treated using this method. In fact, the proton therapy market is on track to become a multibillion-dollar industry by 2024. The number of proton therapy centers is increasing globally. Still, industry experts believe that players will miss out on a majority of cancer patients who can benefit with proton therapy, overlooking a huge multi-Billion-dollar potential market.

The proton therapy market is likely to almost double by 2024 from its current market value.  Globally, the numbers of patients treated with proton therapy is very low whereas the potential candidates for it are in the Millions.

Tuesday, January 31, 2017

Swiss Society for Biomaterials & Regenerative Medicine Annual Conference

Advances in Antimicrobial Biomaterials science, industry, physicians

The SSB+RM meetings are devoted to all aspects of biomaterials science including basic research, engineering, and medical applications. The 2017 conference is dedicated to Advances in Antimicrobial Materials. This conference will include keynote speakers who will give an overview of clinical and commercial translations of biomaterials. Selected sessions are devoted to the design, preparation, characterization, quality control and application of all types of antimicrobial materials from the viewpoints of academia, industry and the clinics.
 
Both oral and poster presentations are welcome. Those wishing to present are asked to submit an extended abstract (1 page maximum) by March 17th, 2017. Abstracts must be submitted as an electronic file in MS Word and must adhere to the abstract guidelines. The abstract template can soon be obtained from the conference website.
 
 
Contact
Dr Katharina Maniura
EMPA, Biointerfaces
Phone: +41 58 765 74 47
e-mail
Subscribe to NBIC News